

DS501 April 24, 2009

# HARD Tri-Mode Ethernet MAC (TEMAC) (v3.00b)

**Product Specification** 

# Introduction

This document provides the design specification for the HARD\_TEMAC (Tri-mode Ethernet Media Access Controller) soft core. Tri-mode indicates that this core may transmit and receive data at three rates, 10, 100, or 1000 Megabits per second (Mb/s).

The HARD\_TEMAC described in this document has been designed incorporating the applicable features described in *IEEE Std. 802.3-2002*. Differences between that specification and the Xilinx HARD\_TEMAC implementation are highlighted and explained in the <RD Red>Specification Exceptions section.

The HARD\_TEMAC is an intellectual property (IP) soft core designed for implementation in a Virtex<sup>®</sup>-4 FX FPGA. The HARD\_TEMAC soft core provides a wrapper around the Hard TEMAC component implemented in the Virtex-4 FX FPGA silicon to allow it to be used in an embedded system with the Embedded Development Kit (EDK) tools. The Virtex-4 FX FPGA Hard TEMAC silicon component has a detailed users guide which should be used to supplement this document. See the "Reference Documents" section of this document.

The HARD\_TEMAC v3.00b core is designed to be used with the PLB\_TEMAC v3.00a core to couple the TEMAC to the PowerPC<sup>®</sup> controller via the Processor Local Bus (PLB).

Two instances of the PLB\_TEMAC are required if both halves of the Hard TEMAC are to be used with the PLB bus. Those Virtex-4 FX FPGAs which have two PowerPC controllers have a second Hard TEMAC available. Each half of a Hard TEMAC to be used with the PLB requires a separate instance of the PLB\_TEMAC.

| LogiCORE™ Facts                                 |                                      |           |  |  |  |
|-------------------------------------------------|--------------------------------------|-----------|--|--|--|
| C                                               | ore Specifics                        |           |  |  |  |
| Supported Device<br>Family                      | See <u>EDK Supporte</u><br>Families. | ed Device |  |  |  |
| Version of Core                                 | HARD_TEMAC                           | v3.00b    |  |  |  |
| Re                                              | sources Used                         |           |  |  |  |
|                                                 | Min                                  | Max       |  |  |  |
| Total Core I/O                                  | 332                                  | 332       |  |  |  |
| Core FPGA IOBs                                  | 4                                    | 48        |  |  |  |
| LUTs                                            | 0 0                                  |           |  |  |  |
| FFs                                             | 0 0                                  |           |  |  |  |
| Block RAMs                                      | 0 0                                  |           |  |  |  |
| Provided with Core                              |                                      |           |  |  |  |
| Documentation                                   | Product Specification                |           |  |  |  |
| Design File Formats                             | VHDL                                 |           |  |  |  |
| Constraints File                                | N/                                   | Ά         |  |  |  |
| Verification                                    | N/                                   | Ά         |  |  |  |
| Instantiation Template                          | N/                                   | Ά         |  |  |  |
| Reference Designs                               | No                                   | ne        |  |  |  |
| Design Tool Requirements                        |                                      |           |  |  |  |
| Xilinx Implementation<br>Tools                  |                                      |           |  |  |  |
| Verification See <u>Tools</u> for requirements. |                                      |           |  |  |  |
| Simulation                                      |                                      |           |  |  |  |
| Synthesis                                       |                                      |           |  |  |  |
|                                                 | Support                              |           |  |  |  |
| Provided by Xilinx, Inc.                        |                                      |           |  |  |  |

© 2005-2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

www.xilinx.com

# **Features**

- Filtering of "bad" receive frames to reduce processor bus utilization.
- Hardware selectable DCR or PLB host interface to configuration registers.
- GMII and MII interfaces to external PHY devices.
- SGMII supported through MGT interface to external copper PHY layer.
- Complies with IEEE 802.3-2000 specification.
- Full duplex operation.
- Media Independent Interface Management (MIIM) for access to PHY transceiver registers.
- Auto pad and Frame Check Sequence (FCS) field insertion or pass through on transmit.
- Auto pad and FCS field stripping or pass through on receive.
- Processes transmission and reception of Pause packets for flow control.
- Supports receive and transmit of longer VLAN type frames compliant to IEEE 802.3-2000.
- Programmable interframe gap.
- Optional support of jumbo frames.

# **Functional Description**

The HARD Tri-Mode Ethernet MAC (TEMAC) core is described in the sections and figures detailed below.

# PLB Tri-mode EMAC System Overview

A PLB Tri-mode Ethernet System includes either one or two PLB\_TEMAC soft cores for each HARD\_TEMAC soft core that will be used.

# HARD\_TEMAC Silicon Component

The Hard TEMAC is a silicon component of each Virtex-4 FX FPGA. The HARD\_TEMAC soft core (wrapper) enables the use of the Hard TEMAC silicon component in EDK embedded systems. Each Hard TEMAC silicon component consists of two independent Ethernet Medium Access Controllers (EMAC) capable of 10, 100, or 1000 Mb/s communications and complies with IEEE 802.3-2002 specifications.

These EMACs may be configured for full or half duplex operation and support several media interfaces including MII, GMII, RGMII, SGMII, and 1000Base-X. The Hard TEMAC also supports MII management of physical devices, PHY, VLAN frames<sup>(1)</sup>, jumbo frames, configurable inter-frame gaps, in-band frame check sequences, FCS, for both transmit and receive, auto padding on transmit, FCS stripping on receive, flow control through Pause packets, receive address filtering, and provides raw statistics vector outputs. Note that some features supported by the Hard TEMAC silicon component are not supported by the soft PLB\_TEMAC/HARD\_TEMAC cores implementation. Please refer to the "Features" list of this document.

<sup>1.</sup> IEEE Std. 802.3 uses the terms Frame and Packet interchangeably when referring to the Ethernet unit of transmission.

The Hard TEMAC silicon component functionality consumes no FPGA programmable resources since the Hard TEMAC is built into the silicon of each Virtex-4 FX FPGA. Please refer to the HARD\_TEMAC silicon component specification for more details.

Figure 1 is a block diagram of the Hard TEMAC and the PowerPC processor Silicon Components.



Figure 1: Hard TEMAC and PowerPC Processor Controller Silicon Components Block Diagram

Figure 2 is a detailed block diagram of the Hard TEMAC. This shows two EMACs with a unified Host interface for access to the configuration registers of both EMACs. The Host interface can be accessed either from a generic signal interface or from a DCR connection which is part of the hard silicon design of the PowerPC controller and the Hard TEMAC. Each EMAC has its own set of Client, PHY, PHY Management, and statistics interfaces.



Figure 2: Detailed Block Diagram of the Hard TEMAC Silicon Component

## **PLB\_TEMAC Core**

The PLB\_TEMAC provides access to the HARD\_TEMAC host interface from the PLB. The DCR Interface, built in the silicon, is not supported.

The PLB\_TEMAC enables memory mapped access to registers and memory mapped or DMA access to packet FIFOs which in turn interface to the Client transmit and receive interfaces of the HARD\_TEMAC to support transmission and reception of Ethernet frames. The PLB\_TEMAC is comprised of several blocks as shown in Figure 3 for a PLB\_TEMAC with DMA.

XILINX<sup>®</sup> Logi CXRE





Figure 3: PLB TEMAC Block Diagram

# HARD\_TEMAC Endianess

Note that the PLB\_TEMAC is designed as a big endian device (bit 0 is the most significant bit and is shown on the left of a group of bits).

The Hard TEMAC is designed as a little endian device (bit 0 is the least significant bit and is shown on right of a group of bits).

The 8-bit GMII transmit and receive data interface to the external PHY is little endian (bit 7 is the most significant bit and appears on the left of the bus). The MII management interface to the PHY is serial with the most significant bit of a field being transmitted first.

# HARD\_TEMAC Design Parameters

To allow the user to generate a HARD\_TEMAC that is tailored for their system, certain features are parameterizable in the HARD\_TEMAC design. This allows the user to have a design that only utilizes the resources required by their system and runs at the best possible performance. The features that are parameterizable in the Xilinx HARD\_TEMAC design are shown in Figure 1

| Generic | Feature / Description Parameter Name                                                                                                                                                                         |                          | Allowable<br>Values                                                              | Default<br>Value | VHDL<br>Type         |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------|------------------|----------------------|
|         |                                                                                                                                                                                                              | Top Level                |                                                                                  |                  |                      |
| G1      | PHY Interface Type                                                                                                                                                                                           | C_PHY_TYPE               | 0 = MII<br>1 = GMII<br>2 = RGMII v1.3<br>4 = SGMII                               | 1                | integer              |
| G2      | Enable Use of EMAC 1                                                                                                                                                                                         | C_EMAC1_<br>PRESENT      | 1 = EMAC1 Used<br>0 = EMAC1 Not<br>Used                                          | 0                | integer              |
| G3      | PHY Address for EMAC 0                                                                                                                                                                                       | C_TEMAC0_<br>PHYADDR     | 00001 - 11111 <sup>(1)</sup>                                                     | 00001            | std_logic_<br>vector |
| G4      | PHY Address for EMAC 1                                                                                                                                                                                       | C_TEMAC1_<br>PHYADDR     | 00001 - 11111                                                                    | 00010            | std_logic_<br>vector |
|         |                                                                                                                                                                                                              | Other                    |                                                                                  |                  |                      |
| G5      | Provides a means for BSB to<br>pass LOC coordinates for<br>IDELAYCTRLs for a given<br>board to EDK and is optional<br>for user to set LOC constraints.<br>This parameter is only used for<br>RGMII PHY type. | C_IDELAYCT<br>RL_LOC     | <rd red="">See<br/>"Detailed<br/>Parameter<br/>Descriptions" on<br/>page 6.</rd> | NOT_SET          | string               |
| G6      | Provides a means for BSB to<br>pass a delay value for a given<br>board to EDK and is optional<br>for user to set delay<br>constraints. This parameter is<br>only used for RGMII PHY type.                    | C_RGMII_RX<br>_CLK_DELAY | <rd red="">See<br/>"Detailed<br/>Parameter<br/>Descriptions" on<br/>page 6.</rd> | 0                | string               |

#### Table 1: HARD\_TEMAC Design Parameters

#### Notes:

1. The value "00000" is a broadcast PHY address and should not be used to avoid contention between the internal HARD\_TEMAC PHY and the external PHY(s). The value "00000" is a broadcast PHY address and should not be used to avoid contention between the internal HARD\_TEMAC PHY and the external PHY(s).

2.

## **Allowable Parameter Combinations**

Each HARD\_TEMAC includes two EMACs. If only one EMAC is used it must be EMAC 0 and C\_EMAC1\_PRESENT should be set to '0'.

## **Detailed Parameter Descriptions**

## C\_PHY\_TYPE

The PHY Type parameter selects which PHY interface will be used by EMAC 0 (and EMAC 1 if present).

## C\_EMAC1\_PRESENT

This parameter is used to indicate if both EMACs in the HARD\_TEMAC are used or not used. If this parameter is set to '1' then both EMACs will be used otherwise only EMAC 0 will be used.

## C\_TEMAC0\_PHYADDR and C\_TEMAC1\_PHYADDR

These values are used to control MII Management accesses to the internal PHY registers of EMAC 0 and EMAC 1 of the HARD\_TEMAC core. An address of "00000" should not be used since this is a broadcast addresses and all PHYs will respond to MII Management requests to this address possibly causing contention. In most systems at least one and possibly more external PHYs will also be used. All PHYs should all have unique PHY addresses.

## C\_IDELAYCTRL\_LOC

When a PHY type of RGMII is selected, an IDELAY primitive is used to help align the receive data with the receive clock. If both EMACs are used, one IDELAY primitive is used for each of the two EMACs. When IDELAY primitives are used, a IDELAYCTRL primitive is also required. The IDELAYCTRL primitive(s) must be located in the proper area in the silicon in order for it to be effective and this is accomplished by adding constraints to the ucf-file. Additionally, a 200 MHz clock must be supplied to the input RefClk which is used by the IDELAY and IDELAYCTRL primitives.

When two IDELAYCTRL primitives are used (when both EMACs are used in RGMII mode), LOC constraints are required on each primitive. The FPGA Editor tool can be helpful to determine IDELAYCTRL LOC coordinates for the user's pinout.

The method for setting the LOC constraint(s) is to use the C\_IDELAYCTRL\_LOC parameter. This parameter when properly set will generate constraints in the hard\_temac core ucf file. Note that if the LOC constraints are set in the system top-level ucf-file, then this parameter has no effect since the constraints in the system top-level ucf-file override those in lower level ucf files.

The syntax of the parameter value is IDELAYCTRL\_XNYM where N and M are coordinates and multiple entries are concatenated by - (i.e, dash). The first value corresponds to EMAC0 and the second value if present corresponds to EMAC1. The following is an example of how the parameter might be set in the MHS file when both EMACs are used in RGMII mode. The X and Y values will be different for each implementation. Please refer to the Virtex-4 User Guide for more information on selecting the correct IDELAY Controller location.

PARAMETER C\_IDELAYCTRL\_LOC="IDELAYCTRL\_X0Y0-IDELAYCTRL\_X0Y1"

The quotes are optional.

## C\_RGMII\_RX\_CLK\_IDELAY

When a PHY type of RGMII is selected, an IDELAY primitive is used to align the receive data with the receive clock. The delay value must be provided for each IDELAY primitive used (one for each EMAC used).

The method for setting the delay value is to use the C\_RGMII\_RX\_CLK\_DELAY parameter. This parameter when properly set will generate constraints in the hard\_temac core ucf file. Note that if the delay constraints are set in the system top-level ucf file, then this parameter has no effect since the constraints in the system top-level ucf file override those in lower level ucf files.

The syntax of the parameter value is N where N is the delay value for the receive clock and multiple entries are concatenated by - (i.e, dash). The first value corresponds to EMAC0 and the second value if present corresponds to EMAC1. The following is an example of how the parameter might be set in the MHS file when both EMACs are used in RGMII mode.

PARAMETER C\_RGMII\_RX\_DELAY="20-20"

The quotes are optional.

# HARD\_TEMAC I/O Signals

The HARD\_TEMAC core uses the *transparent bus* format to simplify generation of embedded systems by greatly simplifying the connection of signals between the PLB\_TEMAC and HARD\_TEMAC cores. This is the same technique that allows the EDK tools to automatically connect the PLB signals.

The ports on the PLB\_TEMAC which connect to the HARD\_TEMAC are grouped into a virtual bus called V4EMACSRC. The corresponding signals on the HARD\_TEMAC are grouped into two virtual busses called V4EMACDST0 and V4EMACDST1 depending on which half of the HARD\_TEMAC the signals are used.

Most of what needs to be done to connect a PLB\_TEMAC to 1/2 of a HARD\_TEMAC is to designate which PLB\_TEMAC connects to which half of the HARD\_TEMAC. This is done by assigning the PLB\_TEMAC virtual bus a name that matches the name assigned to the half of the HARD\_TEMAC. An example of how this is done is shown in the PLB\_TEMAC specification. In the signal list below, those signals that are assigned to the virtual bus are designated with an interface value of V4EMACDST0 and V4EMACDST1.

When only using half of the HARD\_TEMAC, the PLB\_TEMAC must be connected to the half of the HARD\_TEMAC designated with the virtual bus V4EMACDST0. The half of the HARD\_TEMAC designated with the virtual bus V4EMACDST1 is only connected to a PLB\_TEMAC when using both halves of the HARD\_TEMAC. When using only one PLB\_TEMAC in a system the shared host signals are unused and should be left unconnected. The inputs will automatically be tied high or low as required.

When using both halves of the HARD\_TEMAC, the two PLB\_TEMACs must be connected together in order to share the one host interface connection to the HARD\_TEMAC. The PLB\_TEMAC connected to V4EMACDST0 will drive the host interface based on its own requests and those requests it receives from the PLB\_TEMAC connected to V4EMACDST1.

The external I/O signals for the HARD\_TEMAC are listed in Table 2.

| Port                             | Signal Name                     | Interface  | I/O | Description                                        |  |  |  |  |
|----------------------------------|---------------------------------|------------|-----|----------------------------------------------------|--|--|--|--|
|                                  | EMAC 0 Client Receive Interface |            |     |                                                    |  |  |  |  |
| P1                               | Emac0ClientRxd(7:0)             | V4EMACDST0 | 0   | Client receive Data                                |  |  |  |  |
| P2                               | Emac0ClientRxdVld               | V4EMACDST0 | 0   | Client receive data valid                          |  |  |  |  |
| P3                               | Emac0ClientRxdVldMsw            | V4EMACDST0 | 0   | Client receive data valid on most significant word |  |  |  |  |
| P4                               | Emac0ClientRxGoodFrame          | V4EMACDST0 | 0   | Client valid receive frame indicator               |  |  |  |  |
| P5                               | Emac0ClientRxBadFrame           | V4EMACDST0 | 0   | Client invalid receive frame indicator             |  |  |  |  |
| P6                               | Emac0ClientRxFrameDrop          | V4EMACDST0 | 0   | Client receive frame dropped indication            |  |  |  |  |
| P7                               | Emac0ClientRxdVreg6             | V4EMACDST0 | 0   | Client receive data valid early registration       |  |  |  |  |
| P8                               | Emac0ClientRxStats(6:0)         | V4EMACDST0 | 0   | Client receive statistics                          |  |  |  |  |
| P9                               | Emac0ClientRxStatsVld           | V4EMACDST0 | 0   | Client receive statistics valid indicator          |  |  |  |  |
| P10                              | Emac0ClientRxStatsByteVId       | V4EMACDST0 | 0   | Client receive statistics byte valid               |  |  |  |  |
| EMAC 0 Client Transmit Interface |                                 |            |     |                                                    |  |  |  |  |

#### Table 2: HARD\_TEMAC I/O Signals

|      |                            | (                |           |                                                  |  |  |
|------|----------------------------|------------------|-----------|--------------------------------------------------|--|--|
| Port | Signal Name                | Interface        | I/O       | Description                                      |  |  |
| P11  | ClientEmac0Txd(7:0)        | V4EMACDST0       | I         | Client transmit data                             |  |  |
| P12  | ClientEmac0TxdVld          | V4EMACDST0       | I         | Client transmit data valid                       |  |  |
| P13  | ClientEmac0TxdVldMsw       | V4EMACDST0       | I         | Client transmit data valid most significant word |  |  |
| P14  | Emac0ClientTxAck           | V4EMACDST0       | 0         | Client transmit acknowlege                       |  |  |
| P15  | ClientEmac0TxUnderRun      | V4EMACDST0       | I         | Client tx under run                              |  |  |
| P16  | Emac0ClientTxCollision     | V4EMACDST0       | 0         | Client transmit collision indicator              |  |  |
| P17  | Emac0ClientTxRetransmit    | V4EMACDST0       | 0         | Client retransmit indication                     |  |  |
| P18  | ClientEmac0TxIfgDelay(7:0) | V4EMACDST0       | I         | Client interframe gap delay for tx.              |  |  |
| P19  | ClientEmac0TxFirstByte     | V4EMACDST0       | I         | Client transmit first byte indicator             |  |  |
| P20  | Emac0ClientTxStats         | V4EMACDST0       | 0         | Client transmit statistics                       |  |  |
| P21  | Emac0ClientTxStatsVld      | V4EMACDST0       | 0         | Client transmit statistics valid                 |  |  |
| P22  | Emac0ClientTxStatsByteVld  | V4EMACDST0       | 0         | Client transmit statistics byte valid            |  |  |
|      | EMAC 0 Control Interface   |                  |           |                                                  |  |  |
| P23  | ClientEmac0PauseReq        | V4EMACDST0       | I         | Pause request                                    |  |  |
| P24  | ClientEmac0PauseVal(15:0)  | V4EMACDST0       | I         | Pause value                                      |  |  |
|      |                            | Emac 0 Clo       | cks       |                                                  |  |  |
| P25  | GTX_Clk_0                  | CLK0             | I         |                                                  |  |  |
| P26  | Rx_Client_Clk_0            | V4EMACDST0       | 0         | Receive client clock                             |  |  |
| P27  | Tx_Client_Clk_0            | V4EMACDST0       | 0         | Transmit client clock                            |  |  |
|      |                            | EMAC 0 MII Int   | erface    |                                                  |  |  |
| P28  | MII_TxD_0(3:0)             | PHY0             | 0         | MII transmit data                                |  |  |
| P29  | MII_Tx_En_0                | PHY0             | 0         | MII transmit enable                              |  |  |
| P30  | MII_Tx_Er_0                | PHY0             | 0         | MII transmit error                               |  |  |
| P31  | MII_RxD_0(3:0)             | PHY0             | I         | MII receive data                                 |  |  |
| P32  | MII_Rx_Dv_0                | PHY0             | I         | MII receive data valid                           |  |  |
| P33  | MII_Rx_Er_0                | PHY0             | I         | MII receive error                                |  |  |
| P34  | MII_Rx_Clk_0               | PHY0             | I         | MII receive clock                                |  |  |
|      | l                          | EMAC 0 MII & GMI | l Interfa | ace                                              |  |  |
| P35  | MII_Tx_Clk_0               | PHY0             | I         | MII and GMII transmit clock                      |  |  |
|      | l                          | EMAC 0 MII & GMI | l Interfa | ace                                              |  |  |
| P36  | GMII_TxD_0(7:0)            | PHY0             | 0         | GMII transmit data                               |  |  |
| P37  | GMII_Tx_En_0               | PHY0             | 0         | GMII transmit enable                             |  |  |
| P38  | GMII_Tx_Er_0               | PHY0             | 0         | GMII transmit error                              |  |  |

| Port | Signal Name                      | Interface         | I/O      | Description                                           |  |  |  |  |
|------|----------------------------------|-------------------|----------|-------------------------------------------------------|--|--|--|--|
| P39  | GMII_Tx_Clk_0                    | PHY0              | 0        | GMII transmit clock                                   |  |  |  |  |
| P40  | GMII_RxD_0(7:0)                  | PHY0              | I        | GMII receive data                                     |  |  |  |  |
| P41  | GMII_Rx_Dv_0                     | PHY0              | I        | GMII receive data valid                               |  |  |  |  |
| P42  | GMII_Rx_Er_0                     | PHY0              | I        | GMII receive error                                    |  |  |  |  |
| P43  | GMII_Rx_Clk_0                    | PHY0              | I        | GMII receive clock                                    |  |  |  |  |
|      | EMAC 0 SGMII Interface           |                   |          |                                                       |  |  |  |  |
| P44  | TxP_0                            | PHY0              | 0        | SGMII transmit positive                               |  |  |  |  |
| P45  | TxN_0                            | PHY0              | 0        | SGMII transmit negative                               |  |  |  |  |
| P46  | RxP_0                            | PHY0              | I        | SGMII receive positive                                |  |  |  |  |
| P47  | RxN_0                            | PHY0              | I        | SGMII receive negative                                |  |  |  |  |
|      | EMAC 0 RGMII Interface           |                   |          |                                                       |  |  |  |  |
| P48  | RGMII_TxD_0(3:0)                 | PHY0              | 0        | Reserved for future use                               |  |  |  |  |
| P49  | RGMII_Tx_Ctl_0                   | PHY0              | 0        | Reserved for future use                               |  |  |  |  |
| P50  | RGMII_TxC_0                      | PHY0              | 0        | Reserved for future use                               |  |  |  |  |
| P51  | RGMII_RxD_0(3:0)                 | PHY0              | I        | Reserved for future use                               |  |  |  |  |
| P52  | RGMII_Rx_Ctl_0                   | PHY0              | I        | Reserved for future use                               |  |  |  |  |
| P53  | RGMII_RxC_0                      | PHY0              | I        | Reserved for future use                               |  |  |  |  |
|      |                                  | EMAC 0 MDIO Ir    | iterface | 3                                                     |  |  |  |  |
| P54  | MdC_0                            | PHY0              | 0        | MII Management Clock                                  |  |  |  |  |
| P55  | MdIO_0                           | PHY0              | I/O      | MII Management Data                                   |  |  |  |  |
| P56  | EMAC0ClientAnInterrupt           | V4EMACDST0        | 0        | Auto negotiation complete interrupt                   |  |  |  |  |
|      | EN                               | AC 1 Client Recei | ve Inte  | rface                                                 |  |  |  |  |
| P57  | Emac1ClientRxd(7:0)              | V4EMACDST1        | 0        | Client receive Data                                   |  |  |  |  |
| P58  | Emac1ClientRxdVld                | V4EMACDST1        | 0        | Client receive data valid                             |  |  |  |  |
| P59  | Emac1ClientRxdVldMsw             | V4EMACDST1        | ο        | Client receive data valid on most<br>significant word |  |  |  |  |
| P60  | Emac1ClientRxGoodFrame           | V4EMACDST1        | 0        | Client valid receive frame indicator                  |  |  |  |  |
| P61  | Emac1ClientRxBadFrame            | V4EMACDST1        | 0        | Client invalid receive frame indicator                |  |  |  |  |
| P62  | Emac1ClientRxFrameDrop           | V4EMACDST1        | 0        | Client receive frame dropped indication               |  |  |  |  |
| P63  | Emac1ClientRxdVreg6              | V4EMACDST1        | 0        | Client receive data valid early registration          |  |  |  |  |
| P64  | Emac1ClientRxStats(6:0)          | V4EMACDST1        | 0        | Client receive statistics                             |  |  |  |  |
| P65  | Emac1ClientRxStatsVld            | V4EMACDST1        | 0        | Client receive statistics valid indicator             |  |  |  |  |
| P66  | Emac1ClientRxStatsByteVId        | V4EMACDST1        | 0        | Client receive statistics byte valid                  |  |  |  |  |
|      | EMAC 1 Client Transmit Interface |                   |          |                                                       |  |  |  |  |

|      |                            | (000110)         |           |                                                  |
|------|----------------------------|------------------|-----------|--------------------------------------------------|
| Port | Signal Name                | Interface        | I/O       | Description                                      |
| P67  | ClientEmac1Txd(7:0)        | V4EMACDST1       | I         | Client transmit data                             |
| P68  | ClientEmac1TxdVld          | V4EMACDST1       | I         | Client transmit data valid                       |
| P69  | ClientEmac1TxdVldMsw       | V4EMACDST1       | I         | Client transmit data valid most significant word |
| P70  | Emac1ClientTxAck           | V4EMACDST1       | 0         | Client transmit acknowlege                       |
| P71  | ClientEmac1TxUnderRun      | V4EMACDST1       | I         | Client tx under run                              |
| P72  | Emac1ClientTxCollision     | V4EMACDST1       | 0         | Client transmit collision indicator              |
| P73  | Emac1ClientTxRetransmit    | V4EMACDST1       | 0         | Client retransmit indication                     |
| P74  | ClientEmac1TxIfgDelay(7:0) | V4EMACDST1       | I         | Client interframe gap delay for tx.              |
| P75  | ClientEmac1TxFirstByte     | V4EMACDST1       | I         | Client transmit first byte indicator             |
| P76  | Emac1ClientTxStats         | V4EMACDST1       | 0         | Client transmit statistics                       |
| P77  | Emac1ClientTxStatsVld      | V4EMACDST1       | 0         | Client transmit statistics valid                 |
| P78  | Emac1ClientTxStatsByteVld  | V4EMACDST1       | 0         | Client transmit statistics byte valid            |
|      |                            | EMAC 1 Control   | nterfac   | e                                                |
| P79  | ClientEmac1PauseReq        | V4EMACDST1       | I         | Pause request                                    |
| P80  | ClientEmac1PauseVal(15:0)  | V4EMACDST1       | I         | Pause value                                      |
|      |                            | Emac 1 Clo       | cks       | ·                                                |
| P81  | GTX_Clk_1                  | CLK1             | I         |                                                  |
| P82  | Rx_Client_Clk_0            | V4EMACDST1       | 0         | Receive client clock                             |
| P83  | Tx_Client_Clk_0            | V4EMACDST1       | 0         | Transmit client clock                            |
|      |                            | EMAC 1 MII Int   | erface    |                                                  |
| P84  | MII_TxD_1(3:0)             | PHY1             | 0         | MII transmit data                                |
| P85  | MII_Tx_En_1                | PHY1             | 0         | MII transmit enable                              |
| P86  | MII_Tx_Er_1                | PHY1             | 0         | MII transmit error                               |
| P87  | MII_RxD_1(3:0)             | PHY1             | I         | MII receive data                                 |
| P88  | MII_Rx_Dv_1                | PHY1             | I         | MII receive data valid                           |
| P89  | MII_Rx_Er_1                | PHY1             | I         | MII receive error                                |
| P90  | MII_Rx_Clk_1               | PHY1             | I         | MII receive clock                                |
|      | I                          | EMAC 1 MII & GMI | l Interfa | ace                                              |
| P91  | MII_Tx_Clk_1               | PHY1             | I         | MII and GMII transmit clock                      |
|      |                            | EMAC 1 GMII In   | terface   | -<br>-                                           |
| P92  | GMII_TxD_1(7:0)            | PHY1             | 0         | GMII transmit data                               |
| P93  | GMII_Tx_En_1               | PHY1             | 0         | GMII transmit enable                             |
| P94  | GMII_Tx_Er_1               | PHY1             | 0         | GMII transmit error                              |



| Port | Signal Name            | Interface       | I/O      | Description                         |
|------|------------------------|-----------------|----------|-------------------------------------|
| P95  | GMII_Tx_Clk_1          | PHY1            | 0        | GMII transmit clock                 |
| P96  | GMII_RxD_1(7:0)        | PHY1            | I        | GMII receive data                   |
| P97  | GMII_Rx_Dv_1           | PHY1            | I        | GMII receive data valid             |
| P98  | GMII_Rx_Er_1           | PHY1            | I        | GMII receive error                  |
| P99  | GMII_Rx_Clk_1          | PHY1            | I        | GMII receive clock                  |
|      |                        | EMAC 1 SGMII II | nterface | 9                                   |
| P100 | TxP_1                  | PHY1            | 0        | SGMII transmit positive             |
| P101 | TxN_1                  | PHY1            | 0        | SGMII transmit negative             |
| P102 | RxP_1                  | PHY1            | I        | SGMII receive positive              |
| P103 | RxN_1                  | PHY1            | I        | SGMII receive negative              |
|      |                        | EMAC 1 RGMII II | nterfac  | e                                   |
| P104 | RGMII_TxD_1(3:0)       | PHY1            | 0        | Reserved for future use             |
| P105 | RGMII_Tx_Ctl_1         | PHY1            | 0        | Reserved for future use             |
| P106 | RGMII_TxC_1            | PHY1            | 0        | Reserved for future use             |
| P107 | RGMII_RxD_1(3:0)       | PHY1            | I        | Reserved for future use             |
| P108 | RGMII_Rx_Ctl_1         | PHY1            | I        | Reserved for future use             |
| P109 | RGMII_RxC_0            | PHY1            | I        | Reserved for future use             |
|      |                        | EMAC 1 MDIO Ir  | terface  | 2                                   |
| P110 | MdC_1                  | PHY1            | 0        | MII Management Clock                |
| P111 | MdIO_1                 | PHY1            | I/O      | MII Management Data                 |
| P112 | EMAC1ClientAnInterrupt | V4EMACDST1      | 0        | Auto negotiation complete interrupt |
|      |                        | Host Interfa    | ice      |                                     |
| P113 | HostOpCode(1:0)        | V4EMACDST0      | I        | Host read / write indication        |
| P114 | HostReq                | V4EMACDST0      | I        | Host IF request                     |
| P115 | HostMiimSel            | V4EMACDST0      | I        | Host select for MII management      |
| P116 | HostAddr(9:0)          | V4EMACDST0      | I        | Host address                        |
| P117 | HostWrData(31:0)       | V4EMACDST0      | I        | Data written through Host IF        |
| P118 | HostMiimRdy            | V4EMACDST0      | 0        | MII management / host IF is ready   |
| P119 | HostRdData(31:0)       | V4EMACDST0      | 0        | Data read through Host IF           |
| P120 | HostEmac1Sel           | V4EMACDST0      | I        | Host select for EMAC no. 1          |
| P121 | HostClk                | V4EMACDST0      | I        | Host clock (1 - 100 MHz)            |
|      |                        | SGMII MGT C     | ocks     |                                     |
| P122 | MGTClk_P               | CLK             | I        | MGT clock positive                  |
| P123 | MGTClk_N               | CLK             | Ι        | MGT clock negative                  |



| Port            | Signal Name | Interface | I/O | Description     |  |
|-----------------|-------------|-----------|-----|-----------------|--|
| Reset           |             |           |     |                 |  |
| P124            | Reset       | RST       | Ι   | Reset           |  |
| Reference Clock |             |           |     |                 |  |
| P125            | RefClk      | CLK       | I   | Reference Clock |  |

Figure 4 shows a PLB\_TEMAC system with one PLB\_TEMAC while Figure 5 shows a dual PLB\_TEMAC system connected to the HARD\_TEMAC.







Figure 5: System with Two PLB\_TEMACs

www.xilinx.com

# HARD\_TEMAC Registers Definition

The HARD\_TEMAC core registers are listed in Table 3. This description is appropriate for instances of PLB\_TEMAC that use the PLB\_IPIF to interface to the registers within the HARD\_TEMAC core. Alternatively, these registers may be accessed through the DCR interface built into the processor block.

The HARD\_TEMAC has seven configuration registers (RXC0, RXC1, TXC, FCC, EMCFG, GMIC, and MC). These registers are accessed through the host interface and can be written to at any time. Both the receiver and transmitter logic only respond to configuration changes during IFGs. The configurable resets are the only exception, since the reset is immediate.

Address Filter Register access includes the address filter registers and the multicast address table registers. The HARD\_TEMAC has five address filter registers (UAW0, UAW1, MAW0, MAW1, and AFM) with access through the host interface.

Some of the reset values of the HARD\_TEMAC registers are determined by parameter settings of the hard\_temac core such as which PHY interface is to be used. Where this is the case, the variable reset value will be identified.

| Register Name                       | PLB ADDRESS         | Access                            |
|-------------------------------------|---------------------|-----------------------------------|
| Receive Configuration Word 0 (RXC0) | C_BASEADDR + 0x3200 | Read/Write                        |
| Receive Configuration Word 1 (RXC1) | C_BASEADDR + 0x3240 | Read/Write                        |
| Transmit Configuration (TXC)        | C_BASEADDR + 0x3280 | Read/Write                        |
| Flow Control Configuration (FCC)    | C_BASEADDR + 0x32C0 | Read/Write                        |
| EMAC Mode Configuration (EMCFG)     | C_BASEADDR + 0x3300 | Read (29:0)<br>Read/Write (31:30) |
| RGMII / SGMII Configuration (GMIC)  | C_BASEADDR + 0x3320 | Read                              |
| Management Configuration (MC)       | C_BASEADDR + 0x3340 | Read/Write                        |
| Unicast Address Word 0 (UAW0)       | C_BASEADDR + 0x3380 | Read/Write                        |
| Unicast Address Word 1 (UAW1)       | C_BASEADDR + 0x3384 | Read/Write                        |
| Multicast Address Word 0 (MAW0)     | C_BASEADDR + 0x3388 | Read/Write                        |
| Multicast Address Word 1 (MAW1)     | C_BASEADDR + 0x338C | Read/Write                        |
| Address Filter Mode (AFM)           | C_BASEADDR + 0x3390 | Read/Write                        |

#### Table 3: EMAC Core Registers

# HARD\_TEMAC Core Registers

Note: Receiver Configuration Word 0 (RXC0)

Word 0 of the Receiver Configuration holds the 32 least significant bits of pause frame MAC address.



Pause Frame MAC Address [31:0]

DS501\_06\_02150

#### Figure 6: Receiver Configuration Word 0 (offset 0x3200)

| Table 4: Receiver Configuration V | Word 0 Register Bit Definitions |
|-----------------------------------|---------------------------------|
|-----------------------------------|---------------------------------|

| Bit    | Name  | Core<br>Access | Reset<br>Value | Description                                                                                                                                                                                                                              |
|--------|-------|----------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 - 31 | ERXC0 | Read/Write     | 0x0            | <b>Pause Frame MAC Address [31:0]</b> : This address is used by the HARD_TEMAC to match against the Destination Address of any incoming flow control frames. It is also used as the Source Address for any outbound flow control frames. |

# **Receiver Configuration Word 1 (RXC1)**

Word 1 of the Receiver Configuration holds the 16 most significant bits of pause frame MAC address and several enable and disable bits as defined below.



Figure 7: Receiver Configuration Word 1 (offset 3240)

| Table 5: Receiver Config | guration Word 1 F | Register Bit Definitions |
|--------------------------|-------------------|--------------------------|
|--------------------------|-------------------|--------------------------|

| Bit        | Name         | Core<br>Access | Reset<br>Value | Description                                                                                                                                                                                                                                                  |  |  |
|------------|--------------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0          | RXRST        | Read/Write     | 0              | <b>Receiver reset</b> : When the bit is set to "1", the HARD_TEMAC transmitter will be reset. The bit will then automatically revert "0". Note that this reset will also set all of the Receiver configuration registers to their default values.            |  |  |
| 1          | RXJMB<br>O   | Read/Write     | 1              | <b>Jumbo frame enable</b> : When this bit is set to "1", the<br>HARD_TEMAC receiver will accept frames larger than the<br>IEEE802.3-2002 maximum legal length. When this bit is set to "0",<br>the core will only accept frames up to the specified maximum. |  |  |
| 2          | RXFCS        | Read/Write     | 1              | <b>In-band FCS enable</b> : When set to "1" the FCS field is passed to the client. Otherwise the FCS field is removed from the frame passed to the client. In both cases, the HARD_TEMAC will verify the frame FCS.                                          |  |  |
| 3          | RXEN         | Read/Write     | 1              | <b>Receiver enable</b> : If set to "1" the HARD_TEMAC receiver is enabled. Otherwise, the HARD_TEMAC ignores any activity on the RX port of the physical interface.                                                                                          |  |  |
| 4          | RXVLAN       | Read/Write     | 1              | VLAN enable: When set to "1" VLAN tagged frames will be accepted by the receiver.                                                                                                                                                                            |  |  |
| 5          | RXHD         | Read/Write     | 0              | Half Duplex: If "1", the receiver will operate in half duplex mode.<br>Half Duplex is not supported so this bit should always be '0'.                                                                                                                        |  |  |
| 6          | RXLT         | Read/Write     | 0              | <b>Length/type error check disable</b> : When this bit is set to "1", the core will not perform the Length/type field error checks. When "0". normal operation.                                                                                              |  |  |
| 7 - 15     | Reserve<br>d | Read           | 0x0            | <b>Reserved</b> : These bits are reserved for future definition and will always return all zeros.                                                                                                                                                            |  |  |
| 16 -<br>31 | ERXC1        | Read/Write     | 0x0            | Pause frame MAC Source Address [47:32]: This address is used<br>by the HARD_TEMAC to match against the Destination Address or<br>any incoming flow control frames. It is also used as the Source<br>Address for any outbound flow control frames.            |  |  |

# **Transmitter Configuration (TXC)**

The Transmitter Configuration provides operational features in the transmit side of the HARD\_TEMAC.





| Bit    | Name     | Core<br>Access | Reset<br>Value | Description                                                                                                                                                                                                                                                 |  |
|--------|----------|----------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0      | TXRST    | Read/Write     | 0              | <b>Transmitter reset</b> : When the bit is set to "1", the HARD_TEMAC receiver will be reset. The bit will then automatically revert "0". Note that this reset will also set all of the transmitter configuration register to default values.               |  |
| 1      | TXJMBO   | Read/Write     | 1              | <b>Jumbo frame enable</b> : When this bit is set to "1", the<br>HARD_TEMAC transmitter will send frames larger than the<br>IEEE802.3-2002 maximum legal length. When this bit is set to "0",<br>the core will only send frames up to the specified maximum. |  |
| 2      | TXFCS    | Read/Write     | 0              | 0 <b>In-band FCS enable</b> : When set to "1" the transmitter will expe<br>the FCS field to be passed from the client. When set "0", the<br>transmitter will append padding as required, and compute and<br>append the FCS.                                 |  |
| 3      | TXEN     | Read/Write     | 1              | <b>Transmitter enable</b> : If set to "1" the HARD_TEMAC transmitter is enabled. Otherwise, the core transmitter is disabled.                                                                                                                               |  |
| 4      | TXVLAN   | Read/Write     | 1              | VLAN enable: When set to "1" VLAN tagged frames will be sent by the transmitter.                                                                                                                                                                            |  |
| 5      | TXHD     | Read/Write     | 0              | Half Duplex: If "1", the transmitter will operate in half duplex mode.<br>Half Duplex is not supported so this bit should always be '0'.                                                                                                                    |  |
| 6      | TXIFG    | Read/Write     | 0              | <b>Interframe gap adjust enable</b> : When set to "1", the transmitter uses the value of the IFGP register at the start of frame transmission to adjust the Interframe Gap.                                                                                 |  |
| 7 - 31 | Reserved | Read           | 0x0            | <b>Reserved</b> : These bits are reserved for future definition and will always return all zeros.                                                                                                                                                           |  |

#### Table 6: Transmitter Configuration Register Bit Definitions

# Flow Control Configuration (FCC)

The Flow Control Configuration register enables or disabled HARD\_TEMAC flow control.





| Table | 7: | Flow | Control | Configuration | <b>Register Bi</b> | t Definitions |
|-------|----|------|---------|---------------|--------------------|---------------|
|-------|----|------|---------|---------------|--------------------|---------------|

| Bit    | Name     | Core<br>Access | Reset<br>Value | Description                                                                                                                                                                                                                                                   |  |
|--------|----------|----------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0      | Reserved | Read/Write     | 0              | <b>Reserved</b> : These bits are reserved for future definition and will always return all zeros.                                                                                                                                                             |  |
| 1      | TXFLO    | Read/Write     | 1              | <b>Transmit Flow Control Enable</b> : When "0", the request to transmit pause packets (write to TPP register) is ignored. When "1". requesting the transmit of a pause packet (write to TPP register) will cause the HARD_TEMAC to send a flow control frame. |  |
| 2      | RXFLO    | Read/Write     | 1              | <b>Receive Flow Control Enable</b> : When "0", received flow control frames will be passed to the client. When "1", received flow control frames will inhibit the HARD_TEMAC transmitter operation for a short period of time as defined in IEEE802.3-2002.   |  |
| 3 - 31 | Reserved | Read           | 0x0            | <b>Reserved</b> : These bits are reserved for future definition and will always return all zeros.                                                                                                                                                             |  |

## **EMAC Mode Configuration Register (EMCFG)**

The EMAC Mode Configuration register provides configuration status of link speeds and HARD\_TEMAC PHY interface options as predefined at system build time based on PLB\_TEMAC parameters.

# This release supports the MII, GMII, and SGMII interfaces. It does NOT support the RGMII or 1000BaseX interfaces.

Bits 5 - 7 refer to an internal interface between the PLB\_TEMAC and the HARD\_TEMAC and are fixed and should not be needed by the user.

Bits 0 & 1 must be set to indicate the current operating link speed of the system. This may either be fixed or may use auto negotiation.



Figure 10: EMAC Mode Configuration Register (offset 0x3300)

| Bit    | Name           | Core<br>Access | Reset<br>Value                  | Description                                                                                                                                                                                                     |
|--------|----------------|----------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 - 1  | Link<br>Speed  | Read/Write     | 10 or 01 based on<br>C_PHY_TYPE | Link Speed: Determines link speed of operation:<br>00 = 10 Mb/s<br>01 = 100 Mb/s<br>10 = 1000 Mb/s<br>11 = N/A                                                                                                  |
| 2      | RGMII          | Read           | 0                               | <b>RGMII mode enable</b> : When set to "1", RGMII is enabled.                                                                                                                                                   |
| 3      | SGMII          | Read           | 0 or 1 based on<br>C_PHY_TYPE   | <b>SGMII mode enable</b> : When set to "1", SGMII is enabled.                                                                                                                                                   |
| 4      | 1000<br>BaseX  | Read           | 0                               | <b>1000BaseX mode enable</b> : When this bit is set to "1", the Ethernet MAC is configured in 1000Base-X mode.                                                                                                  |
| 5      | Host<br>Enable | Read           | 1                               | <b>Host Interface Enable</b> : When this bit is set to "1", the host interface is used.                                                                                                                         |
| 6      | TX 16 Bit      | Read           | 0                               | <b>Transmit 16-bit Client Interface enable</b> : When this bit is set to "1", the transmit data client interface is 16 bits wide. When this bit is set to 0, the transmit data client interface is 8 bits wide. |
| 7      | RX 16 Bit      | Read           | 0                               | <b>Receive 16-bit Client Interface enable</b> : When this bit is set to "1", the receive data client interface is 16 bits wide. When this bit is set to 0, the receive data client interface is 8 bits wide.    |
| 8 - 31 | Reserved       | Read           | 0x0                             | <b>Reserved</b> : These bits are reserved for future definition and will always return all zeros.                                                                                                               |

| Table | 8: | EMAC | Mode | Configuration | <b>Register</b> | <b>Bit Definitions</b> |
|-------|----|------|------|---------------|-----------------|------------------------|
|-------|----|------|------|---------------|-----------------|------------------------|

# **RGMII/SGMII Configuration Register (GMIC)**

The RGMII/SGMII Configuration register provides configuration status for HARD\_TEMAC as shown.



Figure 11: RGMII/SGMII Configuration Register (offset 0x3320)

| Bit        | Name                 | Core<br>Access | Reset<br>Value | Description                                                                                                                                                                                                                                                                                                                         |
|------------|----------------------|----------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 - 1      | SGMII Link<br>Speed  | Read           | 00             | SGMII Link Speed: Valid in SGMII mode configuration only. This displays the SGMII speed information, as received by TX_CONFIG_REG[11:10] in the PCS/PMA register. This 2-bit vector is defined with the following values:<br>00 = 10 Mb/s<br>01 = 100 Mb/s<br>10 = 1000 Mb/s<br>11 = N/A                                            |
| 2 -27      | Reserved             | Read           | 0x0            | <b>Reserved</b> . These bits are reserved for future definition and will always return all zeros.                                                                                                                                                                                                                                   |
| 28 -<br>29 | RGMII Link<br>Speed  | Read           | 00             | <b>RGMII Link Speed</b> : Valid in RGMII mode configuration only.<br>Link information from PHY to HARD_TEMAC as encoded by<br>GMII_RX_DV and GMII_RX_ER during the IFG. This 2-bit<br>vector is defined with the following values:<br>00 = 10 Mb/s<br>01 = 100 Mb/s<br>10 = 1000 Mb/s<br>11 = N/A                                   |
| 30         | RGMII Half<br>Duplex | Read           | 0              | <b>RGMII Half Duplex</b> : Valid in RGMII mode configuration only.<br>When this bit is "1", the HARD_TEMAC operates in half-duplex<br>mode. When this bit is "0", the core operates in full-duplex mode.<br>This displays the duplex information from PHY to<br>HARD_TEMAC, encoded by GMII_RX_DV and GMII_RX_ER<br>during the IFG. |
| 31         | RGMII Link<br>Status | Read           | 0              | <b>RGMII Link Status</b> : Valid in RGMII mode configuration only.<br>When this bit is "1", the link is up. When this bit is "0", the link is<br>down. This displays the link information from PHY to<br>HARD_TEMAC, encoded by GMII_RX_DV and GMII_RX_ER<br>during the IFG.                                                        |

| Table | 9: | RGMII/SGMII | Configuration | Register | <b>Bit Definitions</b> |
|-------|----|-------------|---------------|----------|------------------------|
|-------|----|-------------|---------------|----------|------------------------|

## Management Configuration Register (MC)

The Management Configuration Register provides control for the HARD\_TEMAC PHY MII management (MDIO) interface. The MDIO interface supplies a clock to the external devices, EMAC#PHYMCLKOUT. This clock is derived from the HARD\_TEMAC HOSTCLK signal which is connected to the PLB\_CLK inside the PLB\_TEMAC core using the value in the Clock Divide[5:0] configuration register. The frequency of the MDIO clock is given by the following equation:

$$f_{MDC} = \frac{f_{HOSTCLK}}{(1 + \text{Clock Divide}[5:0]) \times 2}$$

To comply with the IEEE 802.3-2002 specification for this interface, the frequency of EMAC#PHYMCLKOUT should not exceed 2.5 MHz. To prevent EMAC#PHYMCLKOUT from being out of specification, the Clock Divide[5:0] value powers up at 000000. While this value is in the register, it is impossible to enable the MDIO interface. Given this, even if the user has enabled the MDIO interface by setting bit 25 of this register, the MDIO port will still be disabled until a non-zero value has been written into the clock divide bits.

The PLB\_TEMAC specification provides a simple example of C code that demonstrates writing and reading of PHY registers using the MII Management interface.



Figure 12: Management Configuration Register (offset 0x3340)

| Tabla | 10. | Management | Configuration | Pogistor | <b>Bit Definitions</b> |
|-------|-----|------------|---------------|----------|------------------------|
| iable | 10. | management | Configuration | Register | DIL Delimitions        |

| Bit    | Name     | Core<br>Access  | Reset<br>Value | Description                                                                                                                                                                                                        |
|--------|----------|-----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 - 24 | Reserved | Read            | 0x0            | <b>Reserved</b> : These bits are reserved for future definition and will always return all zeros.                                                                                                                  |
| 25     | MDIO     | Read /<br>Write | 1              | <b>MII management enable</b> : When this bit is "1", the MII management interface is used to access PHY devices. When this bit is 0, the MII management interface is disabled and the MDIO signal remain inactive. |
| 26-31  | CLK_DVD  | Read /<br>Write | 0x0            | <b>Clock Divide [5:0]</b> : This value is used to derive the EmacPhyMclkOut for external devices.                                                                                                                  |

## Unicast Address Register Word 0 (UAW0)

The Unicast Addresses Registers combine to provide a 48 bit ethernet station address. Word 0 provides the low order 32 bits of the address while word 1 provides the high order 16 bits.



Figure 13: Unicast Address Register Word 0 (offset 0x3380)

#### Table 11: Unicast Address Register Word 0 Bit Definitions

| Bit    | Name | Core<br>Access | Reset<br>Value | Description                      |
|--------|------|----------------|----------------|----------------------------------|
| 0 - 31 | UAW0 | Read/Write     | 0x0            | MAC Unicast Address bits [31:0]. |

# Unicast Address Register Word 1 (UAW1)

The Unicast Addresses Registers combine to provide a 48 bit ethernet station address. Word 0 provides the low order 32 bits of the address while word 1 provides the high order 16 bits.



Figure 14: Unicast Address Register Word 1 (offset 0x3384)

| Table | 12: | Unicast | Address | Register | Word 1 | 1 Bit | Definitions |
|-------|-----|---------|---------|----------|--------|-------|-------------|
| 10010 |     | •       |         |          |        |       |             |

| Bit   | Name     | Core<br>Access | Reset<br>Value | Description                                                                                      |  |
|-------|----------|----------------|----------------|--------------------------------------------------------------------------------------------------|--|
| 0-15  | Reserved | Read           | 0x0            | <b>Reserved</b> : These bits are reserved for future definition and will always return all zeros |  |
| 16-31 | UAW1     | Read/Write     | 0x0            | MAC Unicast Address bits [47:32].                                                                |  |

# Multicast Address Register Word 0 (MAW0)

The Multicast Addresses Registers combine to provide a 48 bit ethernet addresses to store in content addressable memory (CAM). Word 0 provides the low order 32 bits of the address while word 1 provides the high order 16 bits. Word also provides CAM register addresses and the read or write control signal. The PLB\_TEMAC specification provides a simple example of C code that demonstrates writing and reading the multicast address CAM.



Figure 15: Multicast Address Register Word 0 (offset 0x3388)

Table 13: Unicast Address Register Word 1 Bit Definitions

| Bit   | Name     | Core<br>Access | Reset<br>Value | Description                                                                                      |  |
|-------|----------|----------------|----------------|--------------------------------------------------------------------------------------------------|--|
| 0-15  | Reserved | Read           | 0x0            | <b>Reserved</b> : These bits are reserved for future definition and will always return all zeros |  |
| 16-31 | UAW1     | Read/Write     | 0x0            | MAC Unicast Address bits [47:32].                                                                |  |

## Multicast Address Register Word 1 (MAW1)

The Multicast Addresses Registers combine to provide a 48 bit ethernet addresses to store in content addressable memory (CAM). Word 0 provides the low order 32 bits of the address while word 1 provides the high order 16 bits. Word also provides CAM register addresses and the read or write

control signal. The PLB\_TEMAC specification provides a simple example of C code that demonstrates writing and reading the multicast address CAM.



Figure 15: Multicast Address Register Word 1 (offset 0x338C)

| Table | 14. | Multicast | Address | Register   | Word 1 | Bit Definitio | ons |
|-------|-----|-----------|---------|------------|--------|---------------|-----|
| rabio |     | manuouou  | ////    | 1 logiotoi |        |               |     |

| Bit   | Name     | Core<br>Access | Reset<br>Value | Description                                                                                                                                                               |
|-------|----------|----------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0-7   | Reserved | Read/Write     | 0x0            | <b>Reserved</b> : These bits are reserved for future definition and will always return all zeros.                                                                         |
| 8     | CAMRNW   | Read/Write     | 0              | <b>CAMRNW</b> : CAM read, not write used to control the reading and writing of Multicast addresses into the content addressable memory registers.                         |
| 9-13  | Reserved | Read/Write     | 0x0            | <b>Reserved</b> : These bits are reserved for future definition and will always return all zeros.                                                                         |
| 14-15 | CAMADDR  | Read/Write     | 0x0            | CAMADDR: This two bit vector is used to choose the CAM<br>Register to access.<br>00 = CAM Register 0<br>01 = CAM Register 1<br>10 = CAM Register 2<br>11 = CAM Register 3 |
| 16-31 | MAW0     | Read/Write     | 0x0            | MAC Multicast Address bits [47:32].                                                                                                                                       |

## Address Filter Mode Register (AFM)

This is a one bit register used to enable or disable address filtering. When promiscuous mode is enabled, all inbound frames will be received and processed. When promiscuous mode is disabled, all inbound frames will be filtered by their respective destination addresses subject the present unicast, multicast, and broadcast addresses programmed into the MAC.



Figure 16: Address Filter Mode Register (offset 0x3390)

| Bit  | Name     | Core<br>Access  | Reset<br>Value | Description                                                                                                                                                        |
|------|----------|-----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | EPRM     | Read /<br>Write | 1              | <b>Promiscuous Mode Enable</b> : When this bit is set to "1", the Address Filter Block is disable. When this bit is set to 0, the Address Filter Block is enabled. |
| 1-31 | Reserved | Read            | 0x0            | <b>Reserved</b> : These bits are reserved for future definition and will always return all zeros.                                                                  |

| Table 🔅 | 15: | Address | <b>Filter Mode</b> | Register | Bit | Definitions |
|---------|-----|---------|--------------------|----------|-----|-------------|
|---------|-----|---------|--------------------|----------|-----|-------------|

# **Design Implementation**

# **Design Tools**

The HARD\_TEMAC design is implemented using VHDL code.

To see the synthesis tool used for this device, go to <u>Tools</u>. The NGC netlist output is then input to the Xilinx Foundation tool suite for device implementation.

# **Target Technology**

The target technology is an FPGA listed in EDK Supported Device Families.

# **Device Utilization and Performance Benchmarks**

Since the HARD\_TEMAC is a VHDL wrapper around a hard silicon component, this core does not utilize FPGA fabric resources.

# **Specification Exceptions**

The HARD\_TEMAC design currently has no exceptions to the mandatory IEEE Std. 802.3 MII interface requirements.

# Support

Xilinx provides technical support for this LogiCORE product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled *DO NOT MODIFY*.

# **Reference Documents**

The following document contains reference information important to understanding the PLB\_TEMAC design:

- 1. IEEE Std. 802.3-2000
- 2. EDK Processor IP Reference Guide
- 3. <u>UG070</u> Virtex-4 FPGA User Guide
- 4. <u>UG074</u> Virtex-4 FPGA Embedded Tri-Mode Ethernet MAC User Guide
- 5. DS416 Direct Memory Access and Scatter Gather v2.01a Data Sheet
- 6. DS459 PLB Master LocalLink v3.02a Data Sheet
- 7. DS458 PLB IPIF v1.00f Data Sheet
- 8. DS489 PLB\_TEMAC (v3.00a) Data Sheet

# **Revision History**

The following table shows the revision history for this document.

| Date     | Version | Revision                                                                                      |
|----------|---------|-----------------------------------------------------------------------------------------------|
| 06/22/05 | 1.0     | Initial Xilinx release for version 1.00.a                                                     |
| 8/4/05   | 1.1     | Converted to new DS template.                                                                 |
| 11/18/05 | 2.0     | Update for core revision 3.00.a                                                               |
| 03/15/06 | 3.0     | Update for latest revision 3.00.a information                                                 |
| 07/07/06 | 3.1     | Add two new parameters for RGMII delay constraints                                            |
| 09/14/06 | 3.2     | New version to match new core version                                                         |
| 2/15/07  | 3.3     | Updated images to graphic standards, updated legal footer to year 2007.                       |
| 1/03/08  | 3.4     | Added details about IDELAYCTRL use                                                            |
| 4/24/09  | 3.5     | Replaced references to supported device families and tool name(s) with hyperlink to PDF file. |

# **Notice of Disclaimer**

Xilinx is providing this product documentation, hereinafter "Information," to you "AS IS" with no warranty of any kind, express or implied. Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to change without notice. XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx.

www.xilinx.com